45y^2+135x-60y+128=0

Simple and best practice solution for 45y^2+135x-60y+128=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45y^2+135x-60y+128=0 equation:


Simplifying
45y2 + 135x + -60y + 128 = 0

Reorder the terms:
128 + 135x + -60y + 45y2 = 0

Solving
128 + 135x + -60y + 45y2 = 0

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '-128' to each side of the equation.
128 + 135x + -60y + -128 + 45y2 = 0 + -128

Reorder the terms:
128 + -128 + 135x + -60y + 45y2 = 0 + -128

Combine like terms: 128 + -128 = 0
0 + 135x + -60y + 45y2 = 0 + -128
135x + -60y + 45y2 = 0 + -128

Combine like terms: 0 + -128 = -128
135x + -60y + 45y2 = -128

Add '60y' to each side of the equation.
135x + -60y + 60y + 45y2 = -128 + 60y

Combine like terms: -60y + 60y = 0
135x + 0 + 45y2 = -128 + 60y
135x + 45y2 = -128 + 60y

Add '-45y2' to each side of the equation.
135x + 45y2 + -45y2 = -128 + 60y + -45y2

Combine like terms: 45y2 + -45y2 = 0
135x + 0 = -128 + 60y + -45y2
135x = -128 + 60y + -45y2

Divide each side by '135'.
x = -0.9481481481 + 0.4444444444y + -0.3333333333y2

Simplifying
x = -0.9481481481 + 0.4444444444y + -0.3333333333y2

See similar equations:

| 24x^2y/6xy^3 | | 580.586=2*58.0586+L | | 35a-16a-7a= | | 24x^2/6xy^3 | | 2+y=2-2y | | -11y+33=104-5y | | 4-2x=-7x+9 | | Y=1/3×6 | | 4x^2=-5x+6 | | Y=.80(50)+20 | | 3x-2=2(7x+2)-3x-8 | | 29x=23x+-42 | | 3(x-2)+5=-5+x-22 | | 39x=23x-42 | | 2cos-1/3=0 | | 10=2.8+2.4(m-1) | | 3x^2+16y+24=8 | | 188.9024=2*32.1536+L | | 2x-2x=-7-3x | | 90=60(d-x) | | Y=0.50(50)+20 | | 2x-2x=-3x | | 3x+4=-2x+44 | | 11.4=1/6(c-5) | | 4x^2y^3(2x+4y^3-y)=0 | | 152-x^2-x=0 | | -3(2p+4)-8=-2(p+5)+2 | | 34+n=81 | | 41x=11x+15300 | | -3(2p+4)-8=(p+5)+2 | | 10y+20x=200 | | (2p+4)-8=(p+5)+2 |

Equations solver categories